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where til and t11 are values of the stress on the two sides of the shock. In this form, the first two 
equations express the thermodynamic variables P and t11 in terms of the kinematical quantities 
u and U. These equations can alternatively be written to express these latter quantities in terms 
of the former : 

(2.15) 

Equation (2.14h, often called the R ankine-Hugoniot equation, has the important property that it 
involves only the thermodynamic variables. 

Thejump conditions (2.13)1 2 can be arranged in the form [-t 11 ] = PRU[u], [-t11] = 
- (PR U 2 [v] to show that the ju~p in stress is proportional to the jump in particle velocity through 
the coefficient PRU and to the jump in specific volume through the coefficient _(pRU)2. Lines in 
the ([ - t 11]' [u]) and ([ - t 11], [v]) planes that connect states preceding and following a shock 
transition are called Rayleigh lines and have slopes corresponding to these coefficients. The 
quantity PR U itself is called the shock impedance of the material and is a measure of the difficulty 
with which it is compressed. 

The shock jump equations are normally interpreted as constraints on the allowable discon­
tinuous fields. They have an alternate interpretation, however, in terms of steady waves. Indeed, 
it is easy to show that the jump relations hold between any two points of a smooth waveform 
that is propagating steadily at a velocity U (see, for example, [73S7, 74H2]). 

If the form of a smooth steady wave can be recorded experimentally, application of the jump 
relations to a succession of points on this waveform is sufficient to determine the entire deformation 
path in the (t11 , p) and (6, p) planes traversed by a material point during passage of the wave. 
This procedure has been applied by Johnson and Barker [6911] and Prieto and Renero [73P2] to 
a study of the viscoplastic behavior of an aluminum alloy and by Schuler [70S1] to the study ofa 
viscoelastic polymer, poly(methylmethacrylate). In many cases recorded waveforms are not 
steady, and some similarly rigorous, deductive means for interpreting these observations would 
be most useful. Such a method, based on equations (2.l2~ has been proposed by Fowles and 
Williams [70Fl] and further developed by Cowperthwaite and Williams [71 C7] and Seaman 
[74S2]. This method is extremely attractive from the theoretical point of view but has so far 
proven. difficult to implement experimentally. 

2.2. The Hugoniot curve 

Propagation of plane shocks. If the reference density, PR' and the state !J?+ = {6+ ,ti l ' U+,P +} 
of the material into which the shock is advancing are specified, there remain five unknown variables, 
U and !J? - = {6 -, t 11, u -, P -} describing the shock. Specification of the boundary loading 
producing the shock establishes one of these variables. The jump conditions, say in the form (2.14), 
comprise three relations among the remaining four variables. One additional relationship is 
needed to complete the determination of all five variables. This additional relationship is called a 
Hugoniot curve and reflects the differing behaviors of specific materials. Measurement of Hugoniot 
curves forms one of the major tasks of shock-compression research. 

The most commonly measured of the variables are the shock velocity U and the particle velocity 
U - . The locus of associated values of U and u- determined from a set of experiments involving 
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shocks of varying strength defines a Hugoniot curve. This curve depends on the state f/+ of the 
material into which the shock is propagating and is said to be centered on this state. The Hugoniot 
curve centered on the state of rest at normal laboratory ambient conditions is called the principal 
Hugoniot curve of the material in question. 

Experimental measurements are normally made relative to coordinates chosen so that u+ = 0 
and U > O. When this choice is made we write u - == u. It has been found experimentally that some 
hundreds of materials are described to good approximation over the entire range of the available 
data by the linear relation between U and u: 

U = a + bu (2.16) 

where a and b are positive constants characteristic of the material and of the initial state f/ +, in 
which the material is at rest under conditions of atmospheric pressure ' and temperature. By 
combining a measured Hugoniot curve with the jump conditions, a number of other Hugoniot 
relationships (ten in all) can be obtained between pairs of variables in the set {U, f/}. In the case 
where eq. (2.16) holds, these relationships include 

[-t11] = PR(a + bu)u, [t 11 ] = (PRa)2[v] (1 + bpR[V])-2, (2.17) 

and seven other less frequently used relationships. Because shocks can propagate in either the 
+ X or - X direction, Hugoniot curves involving shock or particle velocity have two branches. 
Specifically, a Hugoniot curve relating stress and particle velocity jump can be reflected and 
translated in u so that a given jump in stress can be obtained for a wave having either positive or 
negative velocity and/or propagating into material in uniform motion. Information about the 
Hugoniot curve is the normal outcome of a series of shock-compression experiments. Hugoniot 
curves for three representative metals are shown in fig. 2.1. 

It is significant that the foregoing discussion has been concerned entirely with mechanical 
variables and has not involved temperature or entropy. These quantities increase upon shock 
compression of a body but are not normally measured experimentally and cannot be calculated 
without invoking additional assumptions. Restricting attention to fluids, we see that when the 
Rankine-Hugoniot equation (2.14)3 is combined with the first law of thermodynamics the differen­
tial equations 
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(2.18) 

for calculating the entropy and temperature of Hugoniot states can be obtained. In these relations 
PH(V), SH(V) and 0H(V) are the pressure, entropy density, and temperature along the Hugoniot curve 
centered on f/+, Y == v(8p/8e)v is Grlineisen's parameter, and Cv is the specific heat at constant 
volume. Evaluation of OH and SH requires that y and Cv be known at all states on the Hugoniot 
curve. Expansion of SH(V) about the point V = v+ gives, in consideration of eq. (2.18)1' the result 

[S] = -12~H (~~H)v+ [V]3 + .... (2.19) 

From this relation we see that the increase in entropy of an element of material upon passage of a 
shock is of third order in the compression, i.e., small for small compressions. The Hugoniot curve 
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